1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
| from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf
mnist = input_data.read_data_sets('mnist/', one_hot=True)
sess = tf.InteractiveSession() x = tf.placeholder("float", shape=[None,784]) y_ = tf.placeholder("float", shape=[None,10])
def weight_variable(shape): initial = tf.truncated_normal(shape, stddev = 0.1) return tf.Variable(initial)
def bias_variable(shape): initial = tf.constant(0.1, shape = shape ) return tf.Variable(initial)
def conv2d(x,w): return tf.nn.conv2d(x,w, strides=[1,1,1,1],padding='SAME')
def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1], strides=[1,2,2,1],padding='SAME')
w_conv1 = weight_variable([5,5,1,32]) b_conv1=bias_variable([32])
x_image=tf.reshape(x,[-1,28,28,1])
h_conv1=tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1) h_pool1=max_pool_2x2(h_conv1)
w_conv2=weight_variable([5,5,32,64]) b_conv2=bias_variable([64])
h_conv2=tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2) h_pool2=max_pool_2x2(h_conv2)
w_fc1=weight_variable([7*7*64,1024]) b_fc1=bias_variable([1024])
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64]) h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1)
keep_prob=tf.placeholder("float") h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
w_fc2=weight_variable([1024,10]) b_fc2=bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables())
for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print "step %d, training accuracy %g"%(i, train_accuracy) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print "test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
|