| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 
 | import tensorflow as tf
 
 a = tf.constant([1,2],name="a1")
 b = tf.constant([3,4],name="b1")
 res = a + b
 with tf.Session() as sess:
 c = sess.run(res)
 print(res.get_shape())
 print(sess.run(a))
 print(a)
 
 
 
 
 weight_matrix = tf.Variable(tf.random_normal([2, 3], stddev=2))
 
 w1 = tf.Variable([[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]])
 zeros = tf.Variable(tf.zeros([2, 3], tf.int32))
 ones = tf.Variable(tf.ones([2,3],tf.int32))
 array_define = tf.Variable(tf.constant([1, 2]))
 constant = tf.Variable(tf.constant([1,2,3]))
 
 bias = tf.Variable(tf.zeros([3]))
 w2 = tf.Variable(w1.initialized_value())
 W3 = tf.Variable(w1.initialized_value() * 2.0)
 
 
 w4 = tf.Variable(tf.truncated_normal([2,3],stddev=1))
 w5 = tf.Variable(tf.random_uniform([2,3],minval=0,maxval=2))
 w6 = tf.Variable(tf.random_gamma([2,3],1))
 
 
 init_op = tf.global_variables_initializer()
 sess.run(init_op)
 
 
 print("输出 2*3 权重矩阵")
 print(sess.run(weight_matrix))
 print("w1")
 print(sess.run(w1))
 print("zero")
 print(sess.run(zeros))
 print("ones")
 print(sess.run(ones))
 print("array_define")
 print(sess.run(array_define))
 print("constant")
 print(sess.run(constant))
 print("bias")
 print(sess.run(bias))
 
 print(sess.run(w4))
 print(sess.run(w5))
 print(sess.run(w6))
 
 
 w1 = tf.Variable(tf.random_normal((2,3), stddev=1, seed=1))
 w2 = tf.Variable(tf.random_normal((3,1), stddev=1, seed=1))
 
 
 x = tf.constant([[1.0,2.0]])
 a = tf.matmul(x,w1)
 y = tf.matmul(a,w2)
 
 init_op = tf.global_variables_initializer()
 sess.run(init_op)
 print("y:")
 print(sess.run(y))
 
 
 x1 = tf.placeholder(tf.float32,shape=(3,2),name="input")
 a = tf.matmul(x1,w1)
 y1 = tf.matmul(a,w2)
 print("y1")
 print(sess.run(y1,feed_dict={x1:[[1,2],[2,3],[3,4]]}))
 
 |