| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 
 | 
 from sklearn.metrics import classification_report
 from sklearn import preprocessing
 from sklearn.cross_validation import train_test_split
 from sklearn.model_selection import GridSearchCV
 from sklearn.multiclass import OneVsOneClassifier
 from sklearn.multiclass import OneVsRestClassifier
 import pandas as pd
 
 data_path='./winequality-red.csv'
 
 data=pd.read_csv(data_path,delimiter=';')
 
 
 data_src=data.iloc[:,:11]
 data_tar=data.iloc[:,11:]
 
 X_train, X_test, Y_train, Y_test=train_test_split(data_src,data_tar,test_size=0.20,random_state=33)
 ss = StandardScaler()
 
 X_train = ss.fit_transform(X_train)
 X_test = ss.transform(X_test)
 
 
 grid = GridSearchCV(SVC(), param_grid={"C":[0.1,0.5,1,5,10], "gamma": [1,0,5,0.1,0.05, 0.01]}, cv=4)
 grid.fit(X, y)
 print("The best parameters are %s with a score of %0.2f"
 % (grid.best_params_, grid.best_score_))
 
 
 
 csvm = svm.SVC(C=0.5, kernel="rbf", degree=3, gamma=1, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200)
 
 
 
 
 Y_predict=OneVsOneClassifier(csvm).fit(X_train,Y_train).predict(X_test)
 
 print classification_report(Y_test, Y_predict)
 
 |