最近需要练习一下tensorflow的使用,看了一下实战Google深度学习框架这本书,感觉不错,照着书上的例子敲一下。纯用来记忆一些语法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#coding:utf-8
import tensorflow as tf

from numpy.random import RandomState

# 一个完整的神经网络程序

batch_size=8

#tf,Variable的作用就是保存和更新神经网络的参数5
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))

x=tf.placeholder(tf.float32,shape=(None,2),name='x-input')
y_=tf.placeholder(tf.float32,shape=(None,1),name='y-input')

a=tf.matmul(x,w1)
y=tf.matmul(a,w2)

#定义损失函数
cross_entropy=-tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0)))

#设置优化器,进行权重参数(w)的自动更新,这是tensorflow实现的
train_step=tf.train.AdamOptimizer(0.001).minimize(cross_entropy)

# generate a random dataset.
rdm=RandomState(1)
dataset_size=128

X=rdm.rand(dataset_size,2)

Y=[[int(x1+x2<1)] for (x1, x2) in X]


with tf.Session() as sess:
init_op=tf.initialize_all_variables()
sess.run(init_op)
print sess.run(w1)
print sess.run(w2)

STEPS=10000
for i in range(STEPS):
start=(i * batch_size) % dataset_size
end=min(start + batch_size, dataset_size)

sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]})

if i%1000==0:
total_cross_entropy=sess.run(cross_entropy,feed_dict={x:X, y_:Y})
print("After %d training step(s), cross entropy on all data is %g" % (i,total_cross_entropy))
print sess.run(w1)
print sess.run(w2)